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Abstract

This paper evaluates a variety of tectnical efficiency measures based on a given nonparametric reference technology, the
free disposal hull (FDH). Specifically, we consider the radial measure of Debreu (1951)/Farrell (1957) and the nonradial
measures of Fare (1975), Fire and Lovell (1978) and Zieschang (1984). Furthermore, input-based, output-based, and graph
efficiency versions of these four measures are computed. Theoretical consideration as to the best choice among these
alternative measures is inconclusive; therefore, we examine this problem from an empirical viewpoint. Calculating thirteen
different measures of technical efficiency for a sample of US banks, we compare the measures’ efficiency distributions and
rankings, paying particular attention to how well the radial measure approximates its nonradial alternatives. © 1998 Elsevier

Science B.V.
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1. Introduction

Technical efficiency refers to the ability of an
organization to operate on the boundary of its pro-
duction possibilities set. In recent years a substantial
body of literature on the theoretical and empirical
measurement of technical efficiency has been gener-
ated by researchers in a wide range of fields. ' Two
critical issues are associated with measuring effi-
ciency — appropriate specification of the underlying
technology relative to which efficiency is assessed

i Corregponding author. E-mail: gferrien®@comp.uvark.edu.
! See Lovell (1993) and Seiford (199¢) for discussions and
extensive bibliographies of this literature.

and suitable quantification of the distance between
an observation and the reference technology. The
latter issue itself usually involves two choices: choice
of measure and choice of orientation. Not surpris-
ingly, these issues have received considerable atten-
tion in the literature. However, while the choice of
the reference technology has been examined thor-
oughly from both theoretical and empirical perspec-
tives, 2 the issue of how best to measure distance
from the frontier has been confined largely to the
theoretical literature.

* E.g., Grosskopf (1986) shows that the choice among deter-
ministic nonparametric reference technologies systematically af-
fects the magnitudes of technical efficiency calculated.
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This article is concerned with he second aspect of
efficiency measurement — how to measure an obser-
vation’s distance from the reference technology. In
empirical work, the (often input-based) radial mea-
sures of efficiency have become the standard. How-
ever, the theoretical literature coffers a plethora of
alternative nonradial efficiency indices. This article
focuses on the nonradial measures proposed by Fire
(1975), Fare and Lovell (1978), Fare et al. (1983),
Russell (1985), and Zieschang (1984); a number of
newer measures, surveyed by Pastor (1995), are not
discussed. The primary motive ir proposing the non-
radial alternatives is a fundamental conflict between
the radial measures of technical efficiency proposed
by Debreu (1951) and Farrell (1957), and the intu-
itive Koopmans (1951) definiticn of technical effi-
ciency. Debreu—Farrell measures implicitly define
technical efficiency relative to the isoquant, whereas
the Koopmans definition equates technical efficiency
with membership of the efficient subset of techno]-
ogy. Despite the theoretical developments, most em-
pirical work ignores the nonradial alternatives. :

This article empirically implements and evaluates
a wide variety of radial and nonradial efficiency
measures relative to a given reference technology,
the nonparametric-deterministic free disposal hull
(FDH) of Deprins et al. (1984). * The conflict be-
tween the radial technical efficiency measures and
the Koopmans (1951) definition of technical effi-
ciency is especially pronounced for the FDH tech-
nology, making it a good case to study. The first
goal of this paper is to use the FDH reference
technology to compare the performances of four
alternative measures of technical efficiency — the
radial measure of Debreu (1951)/Farrell (1957), and
the nonradial measures introduced by Fare (1975),
Fare and Lovell (1978) and Zieschang (1984).

The second, closely related, goal is to investigate
the effect of the orientation of a technical efficiency
measure on resulting efficiency scores. In particular,

* There are some notable exceptions. For example, Deller and
Nelson (1991) used the Fare and Lovell (1978) measure, while
Lovell and Pastor (1994) and Lovell et al. (1995) use the ‘global
efficiency measure’, or GEM.

* A similar analysis for data envelopment analysis (DEA) mod-
els is reported in Ferrier et al. (1994).

in addition to the traditional input-based and output-
based orientations, we also consider the graph ver-
sions of each of the four efficiency measures men-
tioned above. Input-based measures proportionally
shrink an observation’s input vector to the point
where the observed output vector is still just feasible;
these measures are ‘oriented’ in the input-dimension
only. Output-based measures expand an output vec-
tor radially until it just remains feasible; these mea-
sures are ‘oriented’ in the output-dimension only. By
contrast, graph measures allow simultaneous de-
creases in the inputs and increases in the outputs
when projecting an observation to the efficient fron-
tier. The rationale for including graph efficiency
measures in our analysis is to meet Koopmans’
definition of efficiency as closely as possible. This is
also the primary rationale underlying many of the
more recently proposed efficiency measures; e.g.,
Ali and Lerme (1991), Bardhan et al. (1994), Lovell
and Pastor (1994), Lovell et al. (1995), and Tone
(1993). These measures have been characterized as
‘global’ efficiency measures because they treat all
input- and output-dimensions simultaneously. For a
number of reasons, the most recently proposed mea-
sures are not treated in either the theoretical or
empirical sections of this article. First, many of the
newest measures do not have ‘oriented’ counterparts;
this would make it impossible to explore the effect
of orientation choice. Second, marny of these mea-
sures have been reviewed elsewhere; e.g., Pastor
(1995). Finally, including all of the various effi-
ciency measures would render the empirical portion
of the analysis unwieldy.

The choice of orientation has practical, as well as,
theoretical implications. In some applications choice
of orientation is clear. For example, in Indian sugar
processing, plants have very little control over their
choice of capital, labor, or sugar cane inputs (due to
institutional arrangements),; meanwhile India has re-
cently become a net importer of sugar, spurring
interest in expanding the domestic production of
sugar (see Ferrantino and Ferrier, 1995). In this case,
an output orientation was the logical choice. In the
field of health care, on the other hand, where the
emphasis is on cost-control, the ‘natural’ choice
would be an input-orientation (see Ferrier and Vald-
manis, 1996). However, some recent research has
voiced concern that restricting attention to a particu-
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lar orientation (e.g., input-based efficiency measure-
ment) may neglect major sources of technical ineffi-
ciency in the other direction (e.g., outputs) (see
Berger et al., 1993 who raise this issue for the US
banking industry). After reviewing the theoretical
literature, which is inconclusive as to the best choice
among the alternative efficiency measures and orien-
tations of measurement, we examine the problem
from an empirical viewpoint. By investigating
whether these efficiency measures yield different
empirical distributions and rankings, and examining
how well the radial efficiency measure approximates
the nonradial alternatives, this research sheds light
on the issue of how the choice of measure affects
efficiency evaluation.

The remainder of this article procezds as follows.
Section 2 reviews the theoretical debate on the mea-
surement of technical efficiency and defines the effi-
ciency measures considered in the empirical analysis
(Section 4). Section 3 discusses the FDH reference
technology and the calculation of the various effi-
ciency indices relative to it. Section 4 calculates the
technical efficiency of a sample of US banks using
the four different measures, each under all three
different orientations, and compares the resulting
efficiency scores. Further reflections and conclusions
are provided in Section 5. To the best of our knowl-
edge this is the most extensive systematic empirical
comparison of such a broad set of radial and nonra-
dial efficiency measures under different orientations.

2. The free disposal hull reference technology

The nonparametric approach to efficiency mea-
surement typically makes very weak assumptions on
the underlying reference technology relative to which
efficiency is measured. > Among the various possible
reference technologies, FDH imposss perhaps the
mildest assumptions. Specifically, aside from the
usual regularity axioms (i.e., ‘no free lunch’, the
possibility of inactivity, boundedness, and closed-
ness), FDH imposes only strong free disposability in
inputs (i.e., positive monotonicity) and in outputs

5 These assumptions are generally less restrictive than those
used in parametric approaches (see Lovell, 1993 for details).

(i.e., nestedness of input requirement sets). The latter
two conditions imply that an increase in inputs can-
not result in a decrease in output and that any
reduction in outputs remains producible given the
same set of inputs. Note that these conditions allow
for variable returns to scale in production.

A production technology transforms the nonnega-
tive inputs x = (x,,x,,...,x,) € R7 into the non-
negative outputs y =(y,,y,,...,»,) € R7. As men-
tioned above, the choice of orientation is sometimes
evident from the problem at hand. For example, if
output levels are exogenous to the decision making
units while the inputs are under their control, then an
input-orientation is appropriate. However, at times
the choice of orientation is more difficult, as it may
be unclear which variables are discretionary. To
allow for different measurement orientations, tech-
nology is defined from three perspectives — input
space, output space, and graph space.

For the input-based measures of technical effi-
ciency, technology can be represented by the input
correspondence, y — L(y) CR7, which assigns an
output vector y to the subset of all input vectors x
that can produce it. The input correspondence of the
FDH reference technology defines a piecewise linear
technology constructed on the basis of observed
input-output combinations:

L(»)™" = {xIxeR?, N2y, M<x, 2, =1,
z;€{0,1}}.

The k X n matrix N contains the n observed outputs
of each on the k observations in the data set, M is
the kX m matrix of observed inputs, z is a 1 Xk
vector of intensity parameters, and [, is a kX1
vector of ones. Similarly, the output correspondence
maps inputs x into subsets P(x) € R’ of outputs; in
the case of the FDH technology it is defined as:

P(x)""={ylyeRT, N2y, M<x, 2, =1,
z;€{0,1}}.

Finally, technology can be represented by its graph
or transformation set; i.e., the set of all feasible
input-output vectors. The graph of the FDH refer-
ence technology is given by:

GR™" = {(x,y) | x€eRT, yeR], N>y,
Z]WSX, zIk=1» 216{011}}7
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Fig. 1. FDH graph section.

and serves as the reference technology for the graph
measures of technical efficiency.

Consistent with variable returns to scale, the ele-
ments of the intensity vector z are restricted to sum
to unity. Because the intensity vector contains only
zeros or ones, linear combinations of multiple obser-
vations are excluded and convexity is not imposed
on the technology. ® This restriction is the crucial
(and only) difference between FDH and the widely
used variable returns to scale data envelopment anal-
ysis (DEA) technology with strong input and output
disposability (Banker et al., 1984). To develop an
intuition for the FDH reference technology, note that
each activity spans one orthant, positive in the inputs
and negative in the outputs, reflecting free disposal
in inputs and outputs. The FDH reference technology
is the boundary of the union of all such orthants. Its
graph and isoquants typically follow stair-step pat-
terns. A typical graph section and an isoquant are
shown in Figs. 1 and 2, respectively.

Though not as popular as DEA in applied work,
FDH provides an attractive basis for the evaluation
of the different efficiency measures for three reasons.
First, it imposes minimal assurnptions with respect to
the production technology. Second, because the con-
flict between the radial measure of technical effi-

® While the intensity vector contains only the integers 0 and 1,
the mixed integer programming problems for computing effi-
ciency scores under FDH can be ecasily solved using a data
classification algorithm based on simple vector dominance reason-
ing (see Tulkens, 1993). A detailed description of the algorithms
used to compute the efficiency measures is provided in an ap-
pendix, which is available upon request.
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Fig. 2. FDH input section.

ciency and Koopmans definition of technical effi-
ciency can be quite prominent for the FDH reference
technology, it provides a good test case for examin-
ing empirical differences across radial and nonradial
measures of efficiency. Finally, on FDH the conflict
between the traditional input- and output-based and
Koopmans notions of efficiency highlight the need to
reconsider the overwhelming popularity of the input-
and output-oriented measures of technical efficiency.
The Koopmans definition, in fact, would give prior-
ity to graph efficiency measures. Thus, a comparison
between input-based, output-based and graph mea-
sures of technical efficiency on FDH seems war-
ranted. The second and third reasons will become
more evident in the next section.

While FDH is very intuitive and attractive for
efficiency measurement purposes, it does possess
some drawbacks.’ First, strong disposability as-
sumptions preclude the detection of congestion on
the technology. In contrast, some DEA models can
accommodate for this phenomenon. 8 Furthermore,
the integer condition on solutions under FDH results
in a loss of contact with the duality theory of ordi-

" The theoretical and empirical advantages and disadvantages
of FDH relative to the DEA family of nonparametric reference
technologies are extensively discussed by Lovell and Vanden
Eeckaut (1994) and Tulkens (1993).

® The known technologies that allow for congestion combine
the assumptions of ray-monotonicity and convexity. Thus, a for-
mulation of congestion for FDH, which does not impose convex-
ity, is lacking.
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nary linear programming. As a consequence, FDH
offers little information regarding the underlying
structure of production technology (e.g., opportunity
costs, substitution ratios, etc.). This is in contrast
with DEA models which allow one to determine
substitution and transformation possibilities through
duality theory.

3. Alternative measures of technical efficiency

Two different notions of technical efficiency have
emerged in the economics literature. The first, due to
Debreu (1951) and Farrell (1957), is based on radial
measures of technical efficiency. In the input-based
case, Debreu—Farrell define technical efficiency as
one minus the maximum equiproportionate reduction
1in all inputs that still allows production of the given
outputs. The second notion, introduced by Koop-
mans (1951), defines a producer as technically effi-
cient if an increase in any output requires a decrease
in at least one other output, or if a decrease in any
input requires an increase in at least one other input.
The great intuitive appeal of this definition has led to
its adoption by several authors, including Charnes et
al. (1978) and Fire and Lovell (1978).

Input-based, radial efficiency measures shrink the
input vector, holding input-mix and the output vector
constant, until it is still just feasible to produce the
observed vector of outputs. Analogous output-based,
radial measures also exist. These two measures are
each oriented in a single space-input space or output
space, respectively. Graph measures of technical ef-
ficiency allow for the simultaneous adjustment of
both inputs and outputs. For ease of exposition, the
following discussion initially concentrates on input-
based efficiency measures; output-based and graph
efficiency measures are considered near the end of
this section.

3.1. Subsets of technology

To better understand the distinction between the
two notions of technical efficiency, we formalize
how the subsets of the reference technologies are
defined. Different measures of technical efficiency
relate observations to different subsets of the input

correspondence. Three subsets of L( y) merit particu-
lar attention (see Fire et al., 1994). First, the input
isoquant of the input correspondence:

tsoaL(¥) = (x| x € L(»), Ax £ L(»)
for A €[0,1)};

second, the weak efficient subset of the input corre-
spondence: °

WEffL(v) ={x|x€L(y), ¥ < *x=x&L(y)};

and, finally, the efficient subset of the input corre-
spondence:

EffL(y) ={x|lxeL(y), X <x=x"&L(y)}.

These subsets are related as follows: IsogL{y) 2
WEFfL(y) D EffL(y).

The Koopmans notion of efficiency is much more
demanding than the Debreu—Farrell efficiency mea-
sure. While the Koopmans definition requires pro-
ductive activities to be elements of the efficient
subset, the Debreu—Farrell measure requires only
that efficient observations belong to the isoquant,
though not necessarily to the efficient subset. Conse-
quently, any reference technology for which the
isoquant diverges from the efficient subset highlights
the conflict between these two concepts of technical
efficiency. For many of the popular reference tech-
nologies used in the programming approach (e.g., the
DEA models), the isoquant and the efficient subset
diverge (see Fire et al., 1994), therefore this problem
deserves serious attention. Under FDH the incon-
gruity between the two notions of technical effi-
ciency is particularly relevant. Due to the strong
disposability of inputs, the isoquant and the weak
efficient subset coincide under the FDH reference
technology; however (as is evident from Figs. 1 and
2), the efficient subset only contains disjoint points.
In Fig. 2, the input efficient subset is simply the set
of productive activities {B, C, D, E}. The distinction
between the isoquant and the efficient subset is thus
very pronounced (especially when compared to the
DEA reference technologies).

° The vector inequality conventions used in the text are as
follows: x> v if and only if x,> y, and x#y; x>y if and
only if x; >y, forall i; and x> "y if and only if x;> y; or
x,=y; =0 forall i.
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In fact, Koopmans (1951, p. 60 and 80) required
simultaneous membership in the efficient subsets of
both the input and the output correspondences (or,
synonymously, the graph efficient subset). Much of
the theoretical literature on techn:cal efficiency mea-
sures, however, has focused on membership in either
one of these two efficient subsets. Many of the
oriented efficiency measures proposed to remedy
defects of the Debreu-Farrell efficiency measure
succeed in measuring efficiency relative to an effi-
cient subset, but only the one subset corresponding
to its orientation. Thus, at best the oriented alterna-
tives only partially meet the Koopmans requirement
for efficiency. However, some of the graph measures
of efficiency satisfy the Koopmans requirement; this
bestows an advantage on these graph measures that
the input- and output-oriented measures do not pos-
sess.

For only a few nonparametric reference technolo-
gies (e.g., the constant returns to scale DEA model
with strong disposability in inputs and outputs of
Charnes et al., 1978 and the constant returns to scale
versicn of the homothetic nonparametric models of
Primont and Primont, 1994) does membership of
either the input or the output efficient subset imply
that an observation is in the graph efficient subset. '°
For most nonparametric reference technologies, FDH
in particular, the divergence between the efficient
subsets of the input and output correspondences is
potentially very important. Fig. 1 shows that radial
measures in either the input- or output-orientation
are unlikely to project an inefficient observation onto
the graph efficient subset of FDH. This reenforces
the case in favor of graph efficiency measures, which
guarantee membership in the graph efficient subset
of the FDH, so as to meet the Koopmans definition
of technical efficiency as closelv as possible.

3.2. Desirable properties of efficiency measures

Addressing the conflict between radial measures
of efficiency and the Koopmans definition of effi-

° Formally, x € EffL(y) « y € EffF{x) < (x,y) € EffGR re-
quires the existence of a joint efficiency production function,
which imposes strict monotonicity on the production correspon-
dences (see Fire, 1983 for details).

ciency, Fare and Lovell’s (1978) initiated a literature
on the axiomatic approach to technical efficiency
measurement. They proposed a set of desirable prop-
erties that a measure of technical efficiency measure
should possess. In terms of an input-based measure
of technical efficiency, E,(x,y), Fire and Lovell’s
(1978) list of four desirable properties is as follows:

(P1) Input vectors should be judged efficient if
and only if they belong to the efficient subset:

If x€L(y), y>0,thenE,(x,y)=1
<= x €EffL(y);

(P2) Inefficient input vectors should be compared
to vectors belonging to the efficient subset:

If x€L(y), y>0,and x € EffL(y), then
E;( x,y) should compare x to some x* € EffL( y);

(P3) E,(x,y) should be homogeneous of degree
minus one (i.e., a feasible scaling of the input vector
leads to an inverse scaling of the efficiency measure):

If x€L(y),and Ax€L(y), y> 0, then
E.(Ax,y) =A7'E|(x,y) forall A€ [A°,+ =],
where A°x € IsoqL( y);

(P4) E,(x,y) should satisfy strict negative mono-
tonicity (i.e., increasing one input while holding all
other inputs and all outputs constant cannot increase
the efficiency measure):

If x€L(y), y>0,and x' >1x,
then E;(x,y) = E,(x',y).

A weaker version of property (P4) is given by:

(P4') E,(x, ) should satisfy weak negative mono-
tonicity (i.e., increasing one input while holding all
other inputs and all outputs constant lowers the
efficiency measure):

If x€L(y), y>0,and x' = x, then
Ei(x,y) > E(¥.y).

A fifth desirable property that has appeared in the
literature is that of commensurability or units invari-
ance. This property requires the measure of effi-
ciency to be independent of the units in which the
inputs and outputs are measured (see Fire et al.,
1994):
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(PS5) E,(x,y) should be units invariant:

If x €L(y) and x" €L(y) for x' = Ax, y' = By,

then E,( x,y) =E/(x',)),

where A and B are positive diagonal matrices. '

Properties (P1) and (P2) assure at least partial
compliance with the Koopmans definition of effi-
ciency. Properties (P3), (P4) and (FP4') address the
sensitivity of the efficiency measure with respect to
input usage. The third property imposes a direct
proportionality between the level of all inputs used
and technical efficiency; the fourth insures that tech-
nical efficiency is sensitive to the level of any single
input used. ' Property (P5) assures that efficiency
measure can not be ‘gamed’ by changing the units of
measure for the inputs and/or outputs change. The
additive model of Charnes et al. (1985) satisfies the
Koopmans definition of efficiency. but does not
satisfy (P5). Lovell and Pastor (1995), however,
show that any efficiency measure can satisfy (P5)
provided that the appropriate model is considered (in
DEA as well as in FDH); all four cf the efficiency
measures considered in this article are units invari-
ant.

"' The units invariance property is easily illustrated by referring
to the linear programs (LPs) used to compute the efficiency
measures on FDH (see the appendix); changing units of measure-
ments amounts to making elementary transformations on the
constraints in the LPs and does not have an impact on solutions to
the LPs.

2 The efficiency measures based directly on the objection func-
tion of the additive model, such as the one presented in Lovell et
al. (1995), are strictly monotonic {see Pastor, 1995).

" A sixth desirable property, translation invariance, has been
introduced in the literature (Ali and Seiford, 1990; Pastor, 1997).
This is of theoretical interest since few existing efficiency mea-
sures are invariant to an affine translation of the input and output
data; in fact, none of the four efficiency measures considered in
this article satisfy this property. However, the translation invari-
ance property is of concern only if the data are not all strictly
positive (see Lovell et al, 1995). Since the data used in the
empirical analysis in Section 3 do not contair any negative values
(zero values do occur; see footnote 14 for their treatment), this
issue of less importance in the present case. For the use of
negative data with DEA, see Pastor (1994).

3.3. Radial and nonradial, input-based measures of
technical efficiency ‘43

The input-based radial measure of technical effi-
ciency introduced by Debreu (1951) and Farrell
(1957) is given by:

DF,(x,y) =min{A|A>0, AxeL(y)}.

As is true of all of the measures of technical effi-
ciency discussed in this section, DF(x,y) varies
between zero and one. A value of unity is a neces-
sary, though not sufficient, condition for Koopmans
efficiency; a value of unity and the absence of
(nonradial) slack is a sufficient condition for Koop-
mans efficiency. DF,(x,y) indicates the proportion
of the observed inputs necessary to produce the
observed level of outputs. Note that DE(x,y) as-
sumes the isoquant as the relevant subset of technol-
ogy for defining technical efficiency. An observation
i1s judged efficient by the radial input efficiency
measure if and only if it belongs to the isoquant; it is
inefficient otherwise. Assuming constant input prices,
(1 — 1/DF,(x,y)) gives the proportion by which ob-
served cost exceeds minimal cost. This straightfor-
ward cost interpretation is one of the advantages of
the radial measures of technical efficiency.

The nonradial, input-based Fére and Lovell (1978)
measure of technical efficiency generalizes DF(x, y)

" In presenting the efficiency measures we assume strictly
positive input and output vectors to reduce notational clutter. For
semipositive input and output vectors the definitions must be
modified so as to eliminate the impact of zeros (see Fire et al.,
1983); the empirical application in Section 4 incorporates these
modifications.

"% Note that a multiplicity of technical efficiency measures is
possible due to three interrelated factors (see Fare et al., 1983).
First, there are three subsets of the input correspondence against
which the technical efficiency of an activity can be gauged.
Second, these subsets are unlikely to be singletons, which in
general leaves a choice among its elements. Third, the size of each
of these subsets depends on the assumptions made on the structure
of the production technology. The general problem is therefore
how to define ‘the’ measure of technical efficiency that relates an
inefficient observation to an element of a subset of the input
correspondence in an economically meaningful way.
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by allowing a different scaling of each individual
input. '® This measure reduces all nonzero inputs by
the set of individual factors that minimize the arith-
metic mean of the reductions. By doing so, it ensures
that the resulting input vector is an element of
efficient subset of the input correspondence, Eff L( y),
though nonradial output slacks may be present. The
Fére and Lovell (1978) measure is given by:

m
FL,(x,y) = min{ YoA/mlI( A x,,-.A,x,)

i=1

eL(y), Aie(o,l]}.

The Zieschang (1984) nonradial, input-oriented
measure of technical efficiency is:

Z(x,y)=FL,(x-DE"[x,y]. y)-DF}(x.,y)

where

DF(x,y) =min{A| A2 0, Axe L*(y)
=L(y) +R7}.

Z(x,y) is an amalgam of the Debreu—Farrell and
Fire—Lovell measures. ! It first radially scales the
inefficient observation down to the isoquant, and
then shrinks the resulting input vector until an ele-
ment in the efficient subset is reached. The first step
holds input mix constant; the second step removes
any remaining inefficiency due to ‘slack’ (i.e., ineffi-
ciency in the mix of inputs). In this regard, Z,(x,y)
is similar to the two stage optimization of the stan-
dard DEA model, though it differs from DEA in that
it does not account for output slacks. Because it may
leave slack in the output dimeasions, Z(x,y) does
not guarantee full compliance with the Koopmans
definition of efficiency.

Finally, the nonradial, input-based asymmetric

6 FL,(x,y) is aiso known as the Ruszell efficiency measure (see
Fare et al., 1985). A similar measure has been proposed in
Bardhan et al. (1994). Bardhan et al. (1994) also discusses
output-oriented and graph versions of the same measure (see
Section 3.4 below).

" The Debreu~Farrell component is calculated on a technology
satisfying strong input disposability. Note that radial measures
have been defined for both weakly and strongly disposable tech-
nologies (see Fire et al., 1994).

Fare measure (Fare, 1975; Fire et al., 1983) of
technical efficiency is defined as:

AF(x,y) = min{AF/(x,y)} j=1,....m,
where

AF!(x,y) =min{A |(Ax,,....x;,...,%,) € L(»)}

AF™(x,y) =min{ A, [(x),...,x;,....A,x,) €L(»)}.

AF(x,y) scales down each input in turn, holding
outputs and the other inputs fixed, and then takes the
minimum over all m of these scalings. Thus,
AF/(x,y) seeks the shortest, uni-dimensional dis-
tance to the frontier. '* Note that this measure scales
inefficient observations down to the boundary of
L(y), which need not coincide with any of its sub-
sets.

A potentially important distinction between radial
and nonradial efficiency measures is that the latter
allow for technical inefficiencies resulting from
wrong choices of the input mix. By contrast, the
radial efficiency measure evaluates efficiency along
a ray. Therefore, it holds factor proportions fixed
and, at least implicitly, ignores, or assumes the ab-
sence of, any inefficiency in the input mix. The
inefficiency in input mix appears as ‘slack’ in the
radially adjusted input vector. Of course, given price
data the inefficiencies in input mix can be quantified
by a separate measure of allocative, as opposed to
technical, efficiency (see Fare et al., 1985, 1994).

A number of relationships among the efficiency
measures are worth noting. First, in the special case
of a single input, all of the measures coincide.
Second, with multiple inputs, DF(x,y) is still a
special case of FL,(x,y) as is AF(x,y). DE(x,y) is
the special case of FL(x,y) in which A, =}, =
-+ =]}, AF(x,y) is the special case in which
A;=1 for all j such that AF/# min{AF}, k=
1,...,m. Furthermore, only Z,(x,y) is defined with

'® Thanassoulis and Dyson (1992) propose a modification of
DEA that is a special case of the asymmetric Fare measure. Rather
than scaling all inputs back to the frontier and then selecting the
smallest such scaling, they allow decision makers to give ‘pre-
emptive priority’ to a particular input or output dimension based
on their preferences and the efficiency score is then calculated
with respect to that one dimension only.
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the specific intention of eliminating slacks. '* Conse-
quently, if DF,(x,y) scales an inefficient observation
down to the efficient subset, then it coincides with
Z(x,y) (ie., the FL,(x,y) component of Z,(x,y)
equals unity). Thus, a comparison of DF,(x,y) and
Z(x,y) is an easy way to detect the presence of
slack. Finally, for a given reference technology, a
complete ordering among these efficiency measures
is possible (Fire et al., 1983; and Kerstens and
Vanden Eeckaut, 1995): DF(x,y) > Z,(x,y) >
FL,(x,y) = AF(x,y).

Fig. 2 illustrates these four efficicncy measures.
The radial measure, DF,(x,y), scales inefficient ob-
servations down to the isoquant (e.g., see observa-
tion c¢). Thus, only those observatiors that lie on a
ray through one of the elements cf the efficient
subset (e.g., observation d) are scaled down to the
efficient subset. The probability of this occurring in
empirical applications is likely to be low. FL;(x,y)
scales the inefficient observation ¢ dcwn to observa-
tion E. Z(x,y) relates the inefficient observation ¢
to observation D by adjusting the radial efficiency
measure for the remaining slack in the first input.
Finally, AF(x,y) selects b as a reference point for
observation ¢, since point ¢’s performance is worst in
the first input dimension. Note that AF,(x,y) leaves
slack in the second input (i.e., the distance from b to
E).

The theoretical literature on these four efficiency
measures (see especially Fire et al., 1983; and Rus-
sell, 1988) concludes that, for a broad class of
reference technologies, they all fail o satisfy all of
the desirable properties given above. DF,(x,y) fails
to satisfy (P1) and (P2) (recall the conflict between
the Debreu—-Farrell and Koopmans notions of effi-
ciency). However, it does satisfy (P2) (homogeneity
of degree minus one), and a weaker version of (P4)
(i.e., it is weakly, rather than strictly, negative mono-
tonic 2°). FL(x,y) satisfies (P1) and (P2), but be-
cause of the possibility of output slack, only partially

' This is the same philosophy behind the measures introduced
by Lovell and Pastor (1994) and Tone (1993)

0 Weak monotonicity requires that increasing one input while
holding all other inputs and all outputs constant cannot increase
the efficiency measure.

meets the Koopmans definition of efficiency. Fur-
thermore, in general FL ,(x,y) satisfies only weaker
versions of (P3) and (P4), it is sub-homogeneous of
degree minus one (i.e., the scaling of the input vector
by a factor larger [smaller] than unity leads to an
efficiency measure smaller [larger] than the inverse
scaling of the efficiency measure by the same factor)
and is weakly negative monotonic. Z,(x,y) satisfies
(P1), (P2) and (P3), but, again, because of the possi-
bility of output slack, only partially meets the Koop-
mans definition of efficiency. In general, Z,(x,y) is
nonmonotonic in inputs; i.e., it can either increase or
decrease if a single input is increased on some
specific technologies. AF,(x, y) satisfies only (P1); it
usually compares inefficient input vectors to the
boundary of L(y), not to any of its subsets. In
addition, AF,(x,y) is sub-homogeneous of degree
minus one and weakly negative monotonic.

In general, the literature fails to check which
properties the various efficiency measures satisfy for
the particular reference technology used. For exam-
ple, if attention is confined to the FDH production
technology, the list of satisfied properties changes
slightly (Kerstens and Vanden Eeckaut, 1995). Un-
der FDH, FL.(x,y) does satisfy strict negative
monotonicity. But FDH is one of the reference tech-
nologies for which Z,(x,y) is nonmonotonic in in-
puts. Table 1 summarizes the properties met by the
four efficiency measures under FDH.

It should be noted that two additional considera-
tions regarding the choice among technical effi-
ciency measures have appeared in the margin of this
literature (see Lovell and Schmidt, 1988). %' One
argument in favor of the Debreu—Farrell efficiency
measure is that, as mentioned above, it has a
straightforward, factor-price-independent, cost inter-
pretation, which is lacking in the nonradial alterna-
tives. It should be noted, however, that an ‘implicit’
cost interpretation is possible for the nonradial input
efficiency measures. For example, the projection
point of FL,(x,y) results from cost minimization
under the assumption that the relative factor prices
equal the ratio of the inverse input quantities avail-

2 Both issues are treated in detail in Ferrier et al. (1994) and
Kerstens and Vanden Eeckaut (1995).
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Table 1
Properties of the efficiency measures under FDH
DE(x,y) FL,(x,y) Z{x,y) AF(x,y)
(P1) Indication of EffL(y) v > W
(P2) Projection to EffL( y) v v
(P3) Homogeneity of degree —~ 1 I SH Id SH
(P4) Negative monotonicity WM v WM
(PS) Units invariance v % v v

1 = property is satisfied;
SH = sub-homogeneity of degree —1;
WM = weak negative monotonicity.

able to the observation. ? A second, more theoreti-
cal, argument in favor of the Debreu—Farrell effi-
ciency measure is that there exists an equivalence
between this efficiency measure and the isoquant of
the input correspondence (see Lovell, 1993). How-
ever, it can be shown that the nonradial efficiency
measures provide similar functional representations
of the efficient subset. If the efficient subset is a
more important subset than the :soquant for technical
efficiency measurement, then ‘his argument would
favor the nonradial efficiency measures.

Finally, it is worth mentioning a problem that
affects radial efficiency measures in general. Thrall
(1989) shows that for the input-based, radial effi-
ciency measure, efficiency scores cannot decrease if
additional inputs are added to the model (i.e., if the
input dimensionality of the reference technology in-
creases). Hence, while efficient observations remain
efficient, inefficient observations may become effi-
cient as the number of input dimension increases. »
This predictable change of the radial measure leaves
room to manipulate the results of any nonparametric
efficiency evaluation (Nunamaker, 1985), just as it is
possible to do under regression analysis by altering
functional form or the set of regressors specified.
Kerstens and Vanden Eeckaut (1995) show that the

22 Similar ‘implicit’ cost interpretations for the other nonradial
efficiency measures are derived in Kerstens and Vanden Eeckaut
(1995).

¥ Taking a different point of view, Charnes and Zlobec (1989)
and Charnes and Neralié¢ (1990) address the stability of program-
ming efficiency scores as the reference technology changes due to
perturbations of the inputs and outputs in the data set.

measures FL (x,y) and Z,(x,y) do not change in a
monotonic way if additional dimensions are included
in the efficiency measurement; in general, AF(x,y)
does not share this property. This topic requires
further attention — our empirical application indi-
cates its importance.

3.4. Radial and nonradial, output and graph mea-
sures of technical efficiency

As efficiency measurement relative to the graph
of technology is very important under FDH, this
section provides the output-oriented and graph coun-
terparts of the radial and the nonradial efficiency
measures presented above.

The radial, output-based efficiency measure is
formally defined as:

DE,(x,y) =max{u|l p>1, ny €P(x)}.

It measures the maximum proportionate increase in
all outputs producible from given inputs. The Fire—
Lovell output measure of technical efficiency is de-
fined:

Z I“Li/nl(l‘l‘]yl""”‘l’nyn)

i=1

FL ( x,y) = max{

EP(x),u; = 1}.

The Zieschang output measure of technical effi-
ciency can be defined as:

Z,(x,y) =FL,(x,DF; [x,y]-y) - DE (x.y),
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where
'DF;()‘J):maX{P-I w1, uyEP+(x)
=P(x)+ R}

Finally, the asymmetric Fdre measure of technical
efficiency in the outputs is given by:

AE (x,y) =max{AF/(x,y)}, j=1,....n,
where

AF) (x,y) = max{ g, [(my 31,0 0950 5y.) EP(X)}

AF/(x,y) = max{ pnl(yl....,yj,,..,p”y")EP(x)}.

The interpretations of these four efficiency measures
is similar to their input-based counterparts. ** In the
case of output-oriented measures, since slack may
exist in the input dimensions, the measures only
partially meet the Koopmans definition of efficiency.

There are two graph measures of the Debreu—Far-
rell type (see Fire et al.,, 1985, pp. 110-127). The
first Debreu—Farrell graph measure of efficiency is:

DE,(x,y) =min{A| A2 0, (Ax,A”'y) €GR}.

It gives the maximal equiproportionate reduction of
all inputs and increase of all outputs. Note that
because inputs and outputs are adjusted simultane-
ously by the same proportion, the path to the frontier
is hyperbolic rather than radial. The generalized
Debreu-Farrell graph measure allows the propor-
tionate reduction of all inputs to differ from the
proportionate increase of all outputs and averages the
two scalars:

A+ u
GDFg(x,y)=min{ lA>0,

p=0, (Ax,p”"y) € GR}.

2% In the empirical application below (Section 4), all output-based
measures are redefined so as to be situated between zero and one,
with unity indicating efficiency. This is common practice in the
empirical literature and facilitates the comparison of the various
efficiency measures. For example, the Detreu-Farrell measure
becomes: DF,(x,y)=min{p |0< ' <1, y/w €P(x)}. The
definitions of the nonradial efficiency measures can be likewise
adapted.

The Fidre-Lovell graph measure is (see Fire et al.,
1985, pp. 153-154):

FL,(x.)

= min (i)l,.+ Zn:p.j)/(m+n)|
j=1

i=1

(Axpseo A X iU vyt )

€GR, A, u, € (0.1]

The Zieschang graph measure is:

Z,(x,y) =FLg(x'DF;[x,y], y’DF;[x,)*]_l)
-DE"(x,y),

where

DE;(x.y) =min{A|A >0, (Ax,A"'y) €GR*},

where GR™ is the graph of a technology satisfying
strong input and output disposability. Finally, the
asymmetric Fdre graph measure of technical effi-
ciency is given by:

AF,(x.y) = min{AF/(x,y)}, j=1,....m+n,
where

AF) (x,y) =min{A, | A x5 ..., %, ¥, -, ,) € GR}

AE(x,y) =min{A, [(xy,.. . A Xpo Y150 Yn) € GR}

AEP* (x,y) = mind o (X Xl Y

AF*"(x,y) = min{ ol (X1s e X ¥iae oty 'y, ) € GR})

5 Thanassoulis and Dyson (1992) generalize FL,(x,y) by al-
lowing each dimension to be adjusted by a different weight. As
indicated by Fire et al. (1987), the ‘extended’ additive model is
equivalent to FLg(x.y). The extended additive model, discussed
in Bardhan et al. (1994) and Charnes et al. (1989), among others,
leads to a ‘measure of efficiency dominance’ (MED), guarantee-
ing units invariance for the additive model of Charnes et al.
(1985).

.¥») €GR}
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and
A€ (0,1 for j=1,...

Several characteristics of the graph measures are
worth noting. First, the graph efficiency measures
are slightly more difficult to interpret than their
input- and output-oriented courterparts. In physical
terms, they indicate the simultaneous input saving
and output expansion potential available to ineffi-
cient observations. In value terms, they measure a
simultaneous reduction in cost and increase in rev-
enue, though no straightforwarc. profit interpretation
is possible (see Fare et al., 19¢5, pp. 107-111, for
details).

Second, several special cases are worth noting. If
m=n=1, then GDFg(x,y) = DFg(x,y). While, if
m=n=1and A=A = ---=A_ and u=p, =

-+ = m, then GDF(x, v)( DE,(x,y)) =
FL (x,y). For A # p, GDF(x y)<DF(x y). This
is because GDF, (x,y) ehmmate; slack in at least one
input and one output dimension, while DF, (x,y) can
leave slacks inupto m+n—1 dlmensmns Further-
more, note that DF(x,y) > max{DF,(x,y),
[DE(x,»)] '} and that DE,(x,y) =1 if either
DF(x,y) =1o0r DE(x,y)=1 (>ee Fire et al., 1985).
This corroborates the remark at the end of the previ-
ous subsection that the radial efficiency measure is
sensitive to the number of dimensions evaluated.

Finally, the nonradial graph measures satisfying
(P2), FLg( x,y) and Zg(x,y), project inefficient ac-
tivities to the graph efficient subset, thereby fully
complying with the Koopmans definition of effi-
ciency. Thus, under FDH, FLg(x,y) and Zg(x,y)
relate inefficient observations d:rectly to an observed
activity when assessing their performance. From a
practical standpoint, this gives FL (x,y) and Z,(x, y)
an advantage for policy-oriented and managerial pur-
poses, since inefficient observations would have an
actual efficient observation available to serve as a
role model. In general, the other efficiency measures
relate inefficient observations to a projection point
on the frontier that is a composite of actual observa-
tions. For example, in Fig. 1 the inefficient observa-
tion b will be projected by FL (x,y) or Z,(x,y)
onto one of the dominating observations spanning an
orthant (C, D or E). By contrast, for example, the
radial input measure would project point b to the
unobserved point e, which has the same level of

omand p'e (01 fork=1,...,n

input as observation C but produces less output than
C.

3.5. An embarrassment of riches? The choice among
efficiency measures

None of the measures considered above possesses
clear theoretical superiority over the others. Further-
more, it is unclear whether any of the arguments
made in the literature tips the balance in favor of any
of the measures for use in empirical work. Given this
lack of consensus as to the ‘best’ measure of effi-
ciency, most practitioners have largely used the tradi-
tional input- and output-oriented radial efficiency
measures as they offer the advantages of being well-
known and easy to compute and are ‘real’ distances.
However, it is precisely because a theoretical solu-
tion to the problem of defining an ideal technical
efficiency measure has not yet been provided that it
is worth asking whether the choice among efficiency
measures makes any difference in practice. We think
it is worthwhile to give serious consideration to this
issue and therefore provide an empirical illustration
of these measures on the specific reference technol-
ogy, FDH.

4. An empirical comparison of efficiency mea-
sures on an FDH technology

This section systematically explores whether the
choice among the various efficiency measures dis-
cussed above makes any difference in practice by
studying the technical efficiency of a sample of US
banks using an FDH reference technology.

4.1. The sample data

Data on a sample of 575 US depository institu-
tions operating in 1984 are used to calculate the
thirteen efficiency measures presented above. The
data were collected under the Federal Reserve Sys-
tem’s Functional Cost Analysis (FCA) program. The
FCA program’s aim is to help participating banks to
increase their operating efficiency by providing them
with average performance figures for similar banks.
This feedback assures that participating institutions
have a self-interest in reporting data accurately.
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Table 2

Descriptive statistics on the sample of US barks

Inputs /outputs Mean Standard deviation Minimum Maximum
X, 111.17 130.0 5.10 1165.79
X5 533145.05 790336.7 2260.13 7608838
X3 1034901.77 1372993.0 36806.48 1155379.05
¥, 12334.50 15819.4 136 151029

¥y 25470.81 342380 226 404045

¥3 2764.97 23965.5 0 570385

Y4 5949.33 103329 0 151282

¥s 1476.99 38222 0 84515

The appropriate definition and measurement of
banking inputs and (especially) outputs is a subject
of debate in the literature on bank costs (see Berger
and Humphrey, 1992 for a discussion). Most empiri-
cal studies now adopt one of two approaches, the
‘production’ or the ‘intermediation’ approach (for a
thorough discussion of these two approaches, see
Colwell and Davis, 1992). The production approach
regards banks as producers of deposit and loan ac-
counts using only traditional inputs (e.g., capital and
labor). It measures outputs by the numbers of deposit
and loan accounts of various types, or by the num-
bers of transactions carried out on each of these
products. Under the intermediation approach, banks
collect deposits and purchased funds and intermedi-
ate them into various types of loans and other assets.
Demand and time deposits are thus viewed as inter-
mediate inputs. In this case the inputs include tradi-
tional economic inputs, as well as purchased funds.
Therefore, outputs are specified as monetary vol-
umes.

Each of these approaches has its advantages and
drawbacks and both have been used in the recent
empirical literature on bank performance. For exam-
ple, Aly et al. (1990), Berger et al. (1987), and
Berger and Humphrey (1991) follow the intermedia-
tion approach; Ferrier and Lovell (1990) and Fried et
al. (1993) opt for the production approach. ** We

* In addition to adopting various approaches to defining and
measuring bank inputs and outputs, these studies use a variety of
reference technologies. For example, Aly et al. (1990) use variable
returns to scale DEA; Ferrier and Lovell (1990) utilize both
stochastic parametric frontiers and DEA; Fried et al. (1993)
choose the FDH approach. Surveying the empirical literature on
bank efficiency, Colwell and Davis (1992) conclude that technical
efficiency is more important than any other type of inefficiency.

adopt the production approach, measuring outputs in
terms of numbers of accounts. The outputs specified
are the numbers of demand (y,) and time (y,)
deposit accounts, and the numbers of real estate
(y,), instalment (y,), and commercial (ys) loans.
The inputs used are the total number of employees
(x,), occupancy and equipment costs (x,), and ex-
penditures on materials (x,). ¥ Table 2 contains
descriptive statistics of these variables. 2

4.2. Results

FDH uses a vector dominance algorithm to clas-
sify observations as either efficient or inefficient (see
Tulkens, 1993 for details). An efficient observation
is given a score of 1; an inefficient observation’s
score is calculated relative to the particular observa-
tion that dominated it. Of the 575 banks in our data
set, 409 are ‘undominated’; that is, they are techni-
cally efficient relative to the other observations in
the data set. All of the efficient observations belong
to the efficient subset of the graph correspondence.
The remaining 166 observations are ‘dominated’ by
another observation and therefore are classified as
technically inefficient. All of the inefficient observa-
tions are in the interior of the graph correspondence.

%7 The measures of capital (x,) and materials { x;) are less than
ideal; unfortunately, information on the physical quantities of
these inputs is not available.

* Ferrier and Lovell (1990) analyze the same set of data used in
this paper; however, they also include environmental variables in
their analysis. Under the nonparametric approach, increasing the
number of dimensions reduces the number of technically ineffi-
cient observations. To highlight differences across the various
efficiency measures as clearly as possible, we choose a specifica-
tion of the production technology that includes only the inputs and
outputs. Therefore, in our analysis environmental variables are
neglected, yielding a higher number of technical inefficient obser-
vations.
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Table 3

Efficiency measures on an FDH reference technology (N = 575)

E(x,y) Mean Standard deviation Skewness Kurtosis Minimum Maximum
DF(x,y) 0.944 0.114 ~2.338 8.285 0.391 1.000
FL(x,y) 0.879 0.206 ~1.372 3.416 0.225 1.000
Z{(x,y) 0.888 0.192 ~1.448 3.755 0.225 1.000
AF(x,y) 0.798 0.338 ~1.253 2.868 0.007 1.000
DF,(x,y) 0.949 0.107 ~2.410 8.784 0.379 1.000
FL (x,y) 0.879 0.20¢ ~-1.376 3.480 0.223 1.000
Z(x,y) 0.885 0.19¢ ~1.411 3.623 0.225 1.000
AF (x,y) 0.797 0.33: -1.161 2.595 0.005 1.000
DE(x,y) 0.971 0.06% ~2932 13.337 0.486 1.000
GDFE,(x,y) 0.954 0.086 ~2.050 7.216 0.440 1.000
FL(x.y) 0.885 0.190 ~1.244 2.982 0.306 1.000
Z,(x,y) 0.893 0.17% ~1.273 3.127 0.306 1.000
AFg( x,y) 0.771 0.369 ~1.081 2.328 0.005 1.000

The empirical efficiency scores generated by the
various measures are compared in three ways. First,
their empirical distributions are examined. Second,
the efficiency scores are correlated across the differ-
ent measures to determine the effect of the choice of
measure on individual observetions’ rankings. Fi-
nally, the degree to which the traditional radial effi-
ciency measure approximates the nonradial effi-
ciency measures is examined.

Table 3 reports descriptive statistics for the thir-
teen input-oriented, output-oriented, and graph effi-
ciency measures calculated for the full sample of
data (N =575). In general, the results are as ex-
pected: DF.(x,y) has the largest mean, followed by
Z(x,y), FL(x,y) and AF,(x,y). The same ordering
of means holds true for the output-based and graph
measures. This simply reflects the ranking among
efficiency measures mentioned above. DF(x, y) also
has the smallest standard deviation and the smallest
range, again followed by the Z,(x,y), FL,(x,y) and
AF.(x,y). The same pattern holds for the output-ori-
ented and graph measures. All of their distributions
are negatively skewed and have positive kurtoses.
DF,(x,y) is the most pronouncedly skewed and also
has the largest kurtosis. The positive kurtoses of the
efficiency measures indicates that their distributions
have fat tails relative to the normal distribution. The
distributions of the same inpu: efficiency measures
on the same data set using DEA are shifted strongly
downwards; this likely is due to a small number of
highly specialized banks found in the data set (see

Ferrier et al., 1994). The FDH-based efficiency scores
are clearly less vulnerable to such observations.

Note that the radial (Debreu—Farrell) efficiency
measures project all 166 inefficient observations onto
the isoquant or the weak efficient subset; therefore,
the radial and Zieschang measures never coincide.
However, the Fire-Lovell and Zieschang input-ori-
ented, output-oriented, and graph efficiency mea-
sures were identical in approximately 63% to 68% of
the inefficient cases. None of the other efficiency
measures coincided for any observations. This in part
explains why the Fare—Lovell and Zieschang mea-
sures have such similar distributions.

Figs. 3—5 present the density distributions of the
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Fig. 3. Densities of input technical efficiency measures on the
FDH (inefficient observations only).
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Fig. 4. Densities of output technical efficiency measures on the
FDH (inefficient observations only).

input-oriented, output-oriented, and graph efficiency
measures, respectively, based on the inefficient ob-
servations only. The distributions appear to differ
markedly. These differences are corroborated by two
simple nonparametric tests. A Fricdman test indi-
cates that the efficiency measures do not follow a
common distribution under any of the three orienta-
tions. Furthermore, with the exceptions of the pairs
DF,(x,y) — DE(x,y), FL.(x,y) — FL (x,y),
Z.(x,y)—Z(x,y), AE(x,y) — AE(x,y), FL(x,y)
- FLg(x,y), Z(x,y) — Z(x,y) and Z(x,y) —
FLg(x,y), the Wilcoxon signed-rank test indicates
that no pair of efficiency measures shares the same
distribution. As these results are reasonable, details

Table 4
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Fig. 5. Densities of graph technical efficiency measures on the
FDH (inefficient observations only).

on these test statistics are suppressed in the interest
of space limitations.

Our results also illustrate the sensitivity of the
efficiency measures to the dimensionality of the data,
an issue discussed earlier. When comparing the in-
put-, output-oriented, and graph efficiency measures,
the total number of dimensions per se does not
change. However, since adjustment can occur over
both inputs and outputs, the graph measures evaluate
efficiency over a larger number of dimensions than
do the input- and output-oriented measures. On the
one hand, it is clear that the radial measure cannot
decrease and the asymmetric Fire measure cannot

Correlation matrix across efficiency measures on an FDH reference technology (N = 166)

E(x,y) DF{(x,y)FL(x,y)Z(x,y) AF(x,y) DE(x,y)FL (x,y)Z (x,y) AF,(x,y) DFg( x,y) GDFg(x, y) FLg(x, y) Zg( x,y) AFS( x.g)
DF(x,y) 1000 0745 0739 0443 0536 0515 0484 0420 0715  0.849 0634 0583 30.99
FL(x,y) 1000 0904 083, 0420 0477 0441 0419 0550 0.623 0759  0.687  0.679
Z(x.y) 1.000 0707 0399  0.402 0392 0324 0537  0.622 0666 0667  0.552
AF(x,y) 1.000 0286 0355 0327 0334 0355 0.385 0630 0561 0775
DE(x,y) 1000  0.800 0796 0533 0784  0.846 0.680 0592 0375
FL(x,y) 1.000 0960 0833 0706 0731 0.897  0.803  0.579
Z(x,y) 1.000 0797 0.657  0.708 0.858 0797  0.565
AR(x,y) 1000 0555  0.551 0775  0.698  0.695
DE(x.y) 1.000  0.883 0683  0.645 0399
GDFE,(x,y) 1000 0751 0704 0421
FL (x,y) 1000 0912 0723
z (x,y) 1000 0.646
AE(x.y) 1.000
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increase as variable dimensions are added. The mean
of the former increases and its range decreases, while
the mean of the latter decreases and its range in-
creases. For the Fiare—Lovell and Zieschang effi-
ciency measures, the impact of adding dimensions in
the computation of efficiency measures is unclear
from the aggregated results.

Additional insight, especially for these nonradial
efficiency measures, is achieved by a detailed ac-
counting of the number of decreasing, constant, and
increasing efficiency scores among the inefficient
observations. Adding dimensions in the calculation
of the efficiency measures, for instance moving from
the input-oriented to the graph measures, has the
following effects in the FDH analysis. The Debreu-
Farrell efficiency measure increases in about 70% of
the inefficient observations and is constant for the
others. The asymmetric Fare efficiency measure de-
creases for about 50% of the inefficient observations
and is constant otherwise. Both the Fare-Lovell and
Zieschang efficiency measures ircrease in about 58%
of the cases and decrease in tae remaining cases.
These results confirm our expectations, with the
strong similarity between the Fare-Lovell and the
Zieschang efficiency measures due to the fact that
both measures account for total input slacks, though
each measure follows a different path to the
frontier, %

Table 4 contains the Pearson product-moment
correlations across efficiency measures. Since the
correlations based on the full sample are very high
due to the high number of efficient observations, the
correlations presented in Table 4 are based on only
the inefficient observations. In general, the correla-
tions are still relatively high. The highest correlations
are those between the two radial graph efficiency
measures and between the Fare—Lovell and Zi-
eschang efficiency measures. The latter high correla-
tion is explained in part by the fact that the Fare—
Lovell and Zieschang efficiency measures coincide if
they relate an observation to & common projection
point in the efficient subset. This is not too surpris-
ing since both measures partly share the same struc-

® Recall the earlier observation that the pairs FL(x,y) and
Z,(x,y) and FL(x,y) and Z(x,y) follow a common distribu-
tion.

ture, though it is not obvious a priori that this would
imply such similar rankings. Compared with the
other measures, the asymmetric Fare efficiency mea-
sure has the lowest correlation coefficients. It corre-
lates fairly well with the Fare—Lovell measure, not
as well with the Zieschang measure, and the correla-
tion between it and the Debreu—Farrell measure is
the weakest in the table.

Finally, it should be noted that similar efficiency
measures correlate fairly well across the three orien-
tations, though the correlation between the input- and
output-orientations is rather low; e.g., the correlation
between AF(x,y) and AE(x,y) is only 0.334. In
general, dissimilar measures correlate much better
within an orientation than they do across orienta-
tions. The correlations across orientations are lowest
when comparing the ranking of the input- and out-
put-orientations; this is likely due to the presence of
nonconstant returns to scale. Overall, this indicates
that, at least under the FDH reference technology,
both choice of measure and choice of orientation
impact upon efficiency rankings. This opens another
avenue for the manipulation of efficiency rankings in
empirical analyses. An unscrupulous practitioner
could select the measure and orientation that sheds
the most favorable light upon his/her preferred ob-
servations. Thus, if performance ranking is a primary
objective, or if there is uncertainty about organiza-
tional objectives, it seems advisable to perform a
sensitivity analysis with regard to the choice of
measure and the orientation of efficiency measure-
ment.

The distinction between the isoquant and the effi-
cient subset is important in theory. Furthermore,
differences among the various efficiency measures
exist both in theory and in practice. However, it may
the case that in practice the Debreu-—-Farrell measures
serve as ‘good’ approximations to the nonradial effi-
ciency measures. If Debreu—Farrell measures scale
down the inefficient observations ‘close’ to the effi-
cient subset, then the choice to use them over one of
the alternatives may not be of much consequence. It
is therefore worthwhile to assess the Debreu—Farrell
measures’ powers of approximation relative to the
efficient subset for the banks in our sample. For this
purpose we use the terminology of Fried et al.
(1993), Lovell (1993, 1992), and Lovell and Vanden
Eeckaut (1994) who suggest reporting any remaining
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Table S
Slacks and radial efficiency in the inputs (N = 166)
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Dimension Mean Standard deviation Maximum Minimum
Total Slack (%)

Input 1 54,31 2493 0.78 99.32
Input 2 21.70 14.11 0.09 60.91
Input 3 40.07 21.00 0.02 94.68
Output 1 23.97 27.47 0.04 190.10
Output 2 85.57 105.78 0.53 1023.00
Output 3 174.82 364.82 0 3018.00
Output 4 105.92 183.70 0.78 1418.00
Output 5 153.66 461.68 0 5348.00
Slack eliminated by the radial efficiency measure (%)

All inputs 19.33 13.71 0.03 60.90
Stack not eliminated by the radial efficiency measure (%)

Input 1 3499 2454 0 94.51
Input 2 2.38 5.75 0 27.41
Input 3 20.74 17.44 0 75.23

‘slacks’ when using radial efficiency measures on
the FDH technology. *°

‘Total slack’ per dimension is defined as the
difference in input and output usaze between the
evaluated observation and its most dominating obser-
vation (i.e., the dominating observation in the effi-
cient subset against which its efficiency is measured).
Slacks therefore refer to the excessive utilization of
inputs and/or the underprovision of outputs. This
‘total slack’ can be decomposed into radial and
nonradial components. The ‘radial slack’ denotes the
difference between the evaluated observation and the
projection point of the radial efficiency measure on
the isoquant. The ‘nonradial slack’ equals the ‘total
slack’ minus the ‘radial slack’. Fig. 2 illustrates
these notions of slack. Note that because slack is
measured in the original units of the input and output
variables, meaningful comparisons are made possible

* As noted by a referee, this may be cumbersome and is not
entirely satisfying because it fails to succinctly summarize the true
level of efficiency realized by an observation. The non-Archi-
medean element in DEA or the measure 2.,(x,y) both remove
slack in their calculations, thus eliminating tae need to treat slack
as a separate issue.

by expressing slack as a percentage of the observed
values.

Table S illustrates the problem of slacks for the
radial, input-oriented measure of technical effi-
ciency. *' Observe that on FDH the radial, input-
based measure may leave ‘nonradial slacks’ in up to
m — 1 input and in all n output dimensions. As all
166 inefficient observations are scaled down to the
isoquant (or weak efficient subset) of the input corre-
spondence, the ‘total slacks’ are rather important,
averaging 40% of the initial input dimensions and
110% of the initial output dimensions. In general the
range is wide, especially in the output dimensions.
The radial measure partially eliminates the ‘total
slack’. ‘Radial slack’ averages only 19% of the ‘total
slack’ in each input dimension, with a maximum
value of about 61%. The ‘nonradial’, or remaining,
slack is more important in two of the three input

' As noted by a referee, if computation of an efficiency mea-
sure yields alternate optima, then it is important to compute the
associated slacks so as to determine the correct projection point
(see Bardhan et al,, 1994). In our sample, only two observations
had alternative optima for the radial output and/or graph effi-
ciency measures.
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dimensions. Only for the second input dimension
(i.e., capital) does the radial efficiency measure man-
age, on average, to eliminate most of the ‘total slack’
in production.

This result is in line with what one would expect,
and it is consistent with the findings of pervasive
remaining slacks reported in Fried et al. (1993) and
Lovell (1992). It appears that the radial efficiency
measure poorly bridges the gap between inefficient
observations and the efficient subset. It is therefore
serves as a poor approximation of the nonradial
efficiency measures. Furthermore, it is clear that in
the case of the FDH reference technology, restricting
attention to the input orientation of measurement
may leave a lot of unmeasured slack in the output
dimensions. This result clearly illustrates the useful-
ness of graph efficiency measurement on FDH.

5. Summary and conclusions

The purpose of this paper was twofold. First, the
choice among measures as well as orientation for
assessing technical efficiency was analyzed from a
theoretical viewpoint. A review of the axiomatic
literature provided a list of desirable properties that
an ‘ideal’ measure of technical efficiency would
possess. It also suggested three nonradial alternatives
to the standard radial efficiency measure of
Debreu—Farrell. Both the Debreu—Farrell measure
and its rivals were presented for input, output, and
graph orientations. Unfortunately, none of these
measures satisfies all of the desirable properties. The
seccnd purpose of the paper was to compare the
performance of these various measures of technical
efficiency on a common set of data using the FDH
approach. FDH is an attractive deterministic-non-
parametric reference technology for the evaluation of
productive efficiency. Furthermore, FDH accentuates
the differences between the radial and nonradial
efficiency measures, therefore providing a good test
case for examining the practical importance of the
choice among alternative efficiency measures and
orientations. The empirical example reveals wide
differences in the distributions of efficiency scores
and in the resulting correlations across alternative
measures and orientations. It also demonstrates that
the radial and the nonradial measures are not close

empirical substitutes, as the radial measures tend to
project inefficient observations points that are far
removed from the efficient subset of technology.

Two main conclusions emerge from the analysis.
First, because the efficient subset is relatively small
for the FDH reference technology, the choice among
various efficiency measures is of crucial importance
in measuring technical efficiency. In particular, our
empirical illustration indicates that the radial effi-
ciency measure does a poor job of closing the dis-
tance between inefficient observations and the effi-
cient subset. For the FDH reference technology, the
graph oriented measures of efficiency appear to be
helpful in complying with Koopmans definition. Sec-
ond, both a priori theoretical arguments and the
empirical evidence resulting from analyzing a sam-
ple of US banks suggest that the Fire—Lovell and
Zieschang efficiency measures may provide valuable
alternatives to the standard radial measures of De-
breu-Farrell. In addition, the recently developed
measures of efficiency that account for both input
and output slacks (e.g., those of Pastor, 1995 and
Tone, 1993) offer promising alternatives that should
be considered in future work.
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